Comparison of principal component analysis and biochemical component analysis in Raman spectroscopy for the discrimination of apoptosis and necrosis in K562 leukemia cells.
نویسندگان
چکیده
Raman spectroscopy has been explored as a promising label-free technique in discriminating apoptosis and necrosis induced cell death in leukemia cells. In addition to Principal component analysis (PCA) as commonly employed in Raman data analysis, another less commonly used but powerful method is Biochemical Component Analysis (BCA). In BCA, a Raman spectrum is decomposed into the contributions from several known basic biochemical components, such as proteins, lipid, nucleic acids and glycogen groups etc. The differences in terms of classification accuracy and interpretability of resulting data between these two methods in Raman spectroscopy have not been systematically investigated to our knowledge. In this study, we utilized both methods to analyze the Raman spectra measured from live cells, apoptotic and necrotic leukemia cells. The comparison indicates that two methods yield comparable accuracy in sample classification when the numbers of basic components are equal. The changes in the contributions of biochemical components in BCA can be interpreted by cell biology principles in apoptosis and necrosis. In contrast, the contributions of most principle components in PCA are difficult to interpret except the first one. The capability of BCA to unveil fine biochemical changes in cell spectra and excellent accuracy in classification can impel the broad application of Raman spectroscopy in biological research.
منابع مشابه
Discrimination of Human Cell Lines by Infrared Spectroscopy and Mathematical Modeling
Variations in biochemical features are extensive among cells. Identification of marker that is specific for each cell is essential for following the differentiation of stem cell and metastatic growing. Fourier transform infrared spectroscopy (FTIR) as a biochemical analysis more focused on diagnosis of cancerous cells. In this study, commercially obtained cell lines such as Human ovarian carcin...
متن کاملDiscrimination of Human Cell Lines by Infrared Spectroscopy and Mathematical Modeling
Variations in biochemical features are extensive among cells. Identification of marker that is specific for each cell is essential for following the differentiation of stem cell and metastatic growing. Fourier transform infrared spectroscopy (FTIR) as a biochemical analysis more focused on diagnosis of cancerous cells. In this study, commercially obtained cell lines such as Human ovarian carcin...
متن کاملبررسی اثر HESA-A بر تکثیر و آپوپتوز رده سلولی لوسمی میلوژن مزمن(K562)
Background and Aim: Chronic myelogenous leukemia is characterized by Philadelphia (Ph) chromosome, the presence of BCR-ABL fusion gene and constitutive activation of the ABL1 tyrosine kinase. Despite an excellent result of target therapy by imatinib, some patients develop resistance to imatinib. In this study Efficacy of HESA-A on proliferation and apoptosis of K562 cell line was assessed. Mat...
متن کاملCisplatin Resistant Patterns in Ovarian Cell Line Using FTIR and Principle Component Analysis
Cisplatin is a common chemotherapeutic agent that used for treatment of many solid cancers. Rapid identification of chemotherapy resistance is very important and may lead to effective treatment plan. Spectroscopy techniques, such as infrared spectroscopy, which are sensitive to biochemical composition of samples, have shown potentials to discriminate tissues. Developing in Fourier transform inf...
متن کاملCombined Unfolded Principal Component Analysis and Artificial Neural Network for Determination of Ibuprofen in Human Serum by Three-Dimensional Excitation–Emission Matrix Fluorescence Spectroscopy
This study describes a simple and rapid approach of monitoring ibuprofen (IBP). Unfolded principal component analysis-artificial neural network (UPCA-ANN) and excitation-emission spectra resulted from spectrofluorimetry method were combined to develop new model in the determination of IBF in human serum samples. Fluorescence landscapes with excitation wavelengths from 235 to 265 nm and emission...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Optics express
دوره 20 20 شماره
صفحات -
تاریخ انتشار 2012